Luskin School of Public Affairs Luskin Center for Innovation

Plug-in Electric Vehicle (PEV) Readiness

7 May 2014

Alternative Clean Transportation (ACT) Expo 2014 Long Beach CA

Brett Williams, MPhil (cantab), PhD

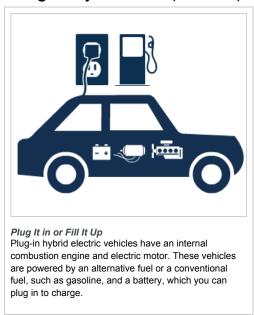
EV & Alt. Fuel Program Director, Luskin Center for Innovation Assistant Adjunct Professor, Public Policy University of California, Los Angeles

innovation.luskin.ucla.edu/ev

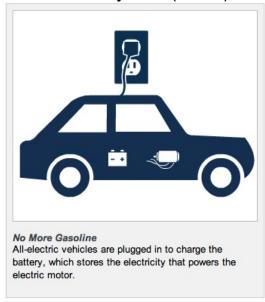
Outline

- Background: market status
 - PEVs products and charging levels
 - PEV and charging-station market penetration
- PEV readiness planning
 - Charging-station siting example: geographical demand and supply assessment of the South Bay
- Charging-station financial viability

UCLA Luskin School of Public Affairs Luskin Center for Innovation


What is available?

Light-duty PEV products


"Electric Vehicles"

- Plug-in EVs (PEVs) —i.e., electric-fuel vehicles—comprise both plug-in-hybrid EVs and all-battery EVs
- Many common components under the hood, but different products for the consumer with distinct policy implications...

Plug-in-hybrid EVs (PHEVs)

All-battery EVs (BEVs)

http://www.afdc.energy.gov/vehicles/electric.html

Plug-in-hybrid EVs (1 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP	Fuel economy* (gas-electric)	Range* (electric, total)
	GM Chevy Volt	\$34,185	37–98 mpg _e	38 e-mi 380 mi total
	Toyota Prius Plug-in	\$29,990	50–95 mpg _e	11 e-mi 540 mi total
	Ford C-Max Energi	\$32,950	43–100 mpg _e	21 e-mi 620 mi total
	Honda Accord Plug-in	\$39,780	46–115 mpg _e	13 e-mi 570 mi total
	Ford Fusion Energi	\$34,700	43–100 mpg _e	21 e-mi 620 mi total

^{*}EPA rating

Plug-in-hybrid EVs (2 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP	Fuel economy (gas-electric)	Range (electric, total)
SEG05422	Porsche Panamera S E-Hybrid	. ,		20 e-mi (NEDC) >220 mi total
	GM Cadillac ELR	\$75,000 33–82 mpg _e *		37 e-mi* 340 total*
8 8	Hyundai Sonata Plug-in Hybrid	TBD in 2014		
	Mitsubishi Outlander P-HEV	TBD in 2014		
10 to the 3.0 to the and the second	Mercedes S 500 Plug-in Hybrid	TBD in 2014		

^{*}EPA rating

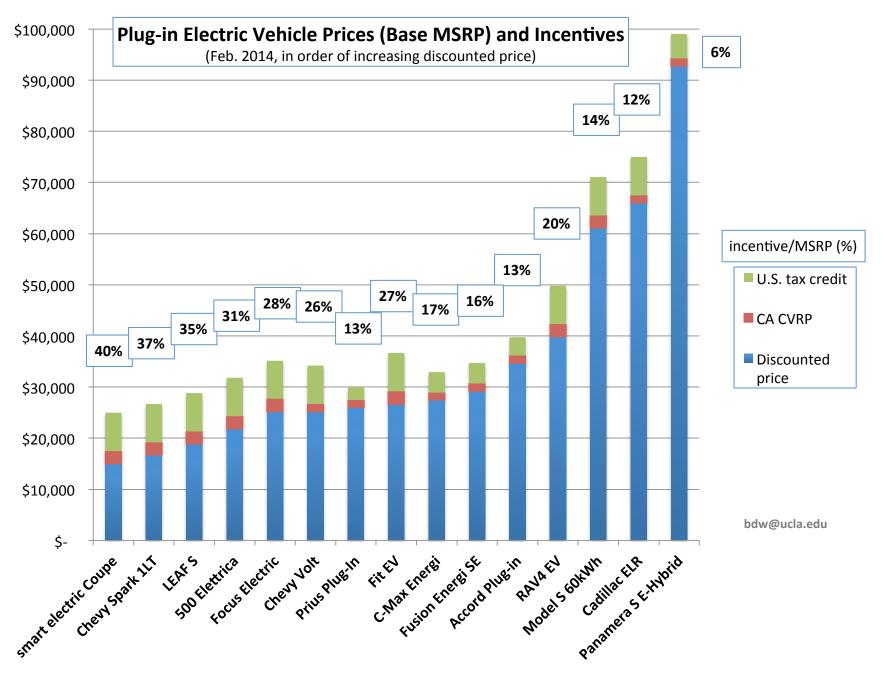
Plug-in-hybrid EVs (3 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP	Fuel economy (gas-electric)	Range (electric, total)		
	Volvo V60 PHEV	TBD in 2014				
	VW Golf twinDRIVE	TBD in 2014				
	Audi A4 e-quattro	TBD in 2014				
	Audi A3 e-tron	TBD in 2014				
	BMW i8	TBD in 2015				

All-battery EVs (1 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP	Fuel economy* (gas-electric)	Range* (electric, total)	
■ One Bulteston	Nissan LEAF		116 mpg _e	75 e-mi	
	smart electric	\$25,000	107 mpg _e	68 e-mi	
	Mitsubishi i	\$29,125	112 mpg _e	62 e-mi	
	Ford Focus Electric	\$35,170	105 mpg _e	76 e-mi	
	Tesla Model S	\$71,070	95 mpg _e	208 e-mi	

^{*}EPA rating


All-battery EVs (2 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP Fuel economy* (gas-electric)		Range* (electric, total)	
ALCON CO	Honda Fit EV	\$36,625	118 mpg _e	82 e-mi	
	Toyota RAV4EV (Tesla inside)	\$49,800	78 mpg _e	103 e-mi	
	Chevy Spark EV	\$26,685	118 mpg _e	82 e-mi	
	Fiat 500e	\$31,800 116 mpg _e		87 e-mi	
F-51.3541	BMW i3	Soon			

^{*}EPA rating

All-battery EVs (3 of 3, in order of release)

bdw@ucla.edu	Vehicle	MSRP	Fuel economy (gas-electric)	Range (electric, total)	
	Mercedes B-Class Electric	TBD in 2014			
	Tesla Model X	TBD in 2014			
G POOLF (S)	VW e-Golf	TBD in 2014			
	Kia Soul EV	TBD in 2014			
	Infinity LE	TBD in 2014			

How are they doing?

PEV and charging-station market penetration

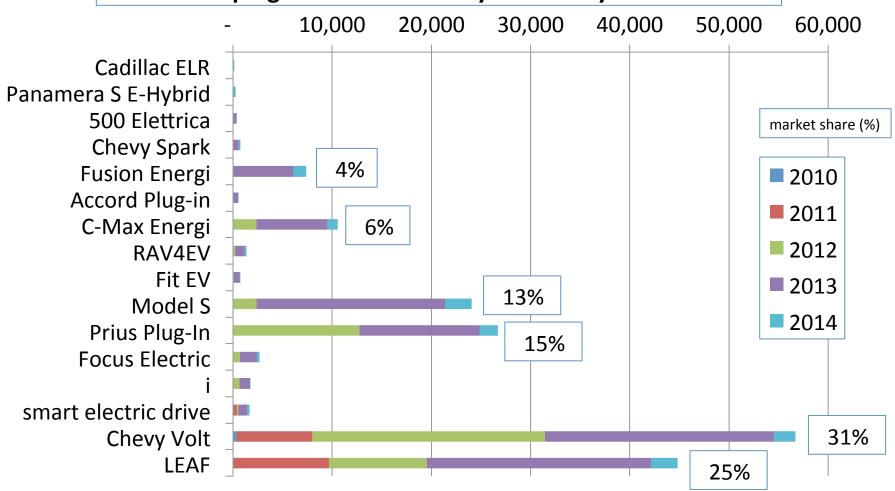
UCLA Luskin School of Public Affairs Luskin Center for Innovation

U.S. Plug-in Electric Vehicle Sales Trends & Analysis Dec 2010 — Feb 2014

Brett Williams, MPhil (cantab), PhD
EV & Alt. Fuel Program Director / Asst. Adj. Professor
bdw@ucla.edu

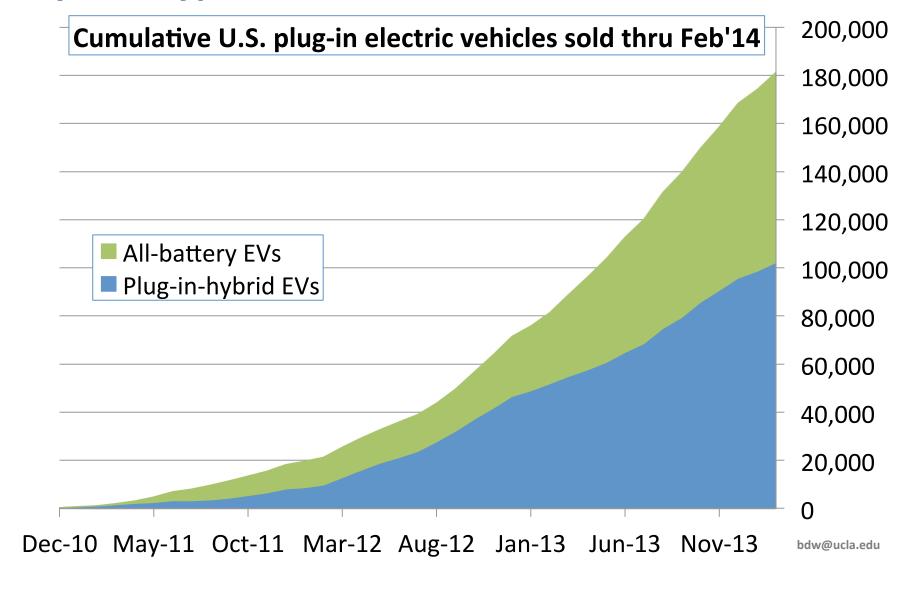
18-Mar-14

http://luskin.ucla.edu/blogs/brettwilliams

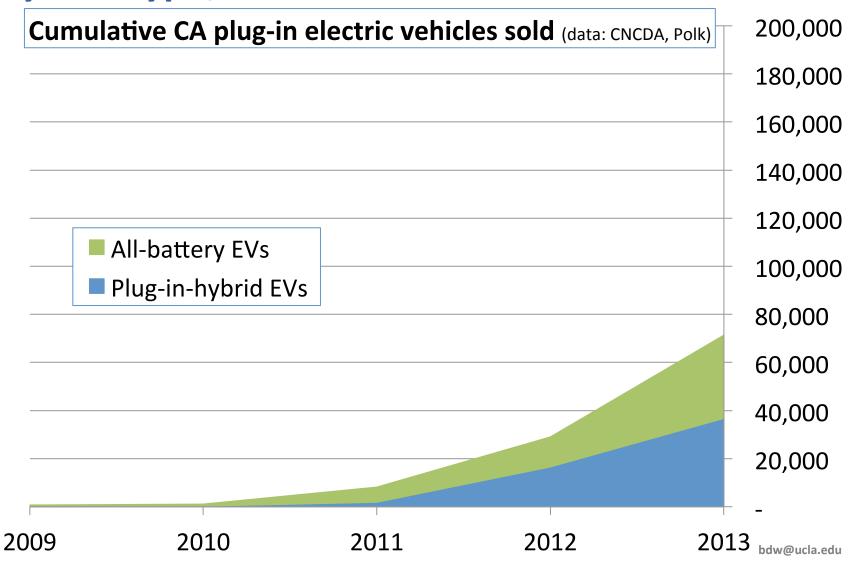


Where are we with plug-in electric vehicles (PEVs)?

Cumulative U.S. light-duty sales

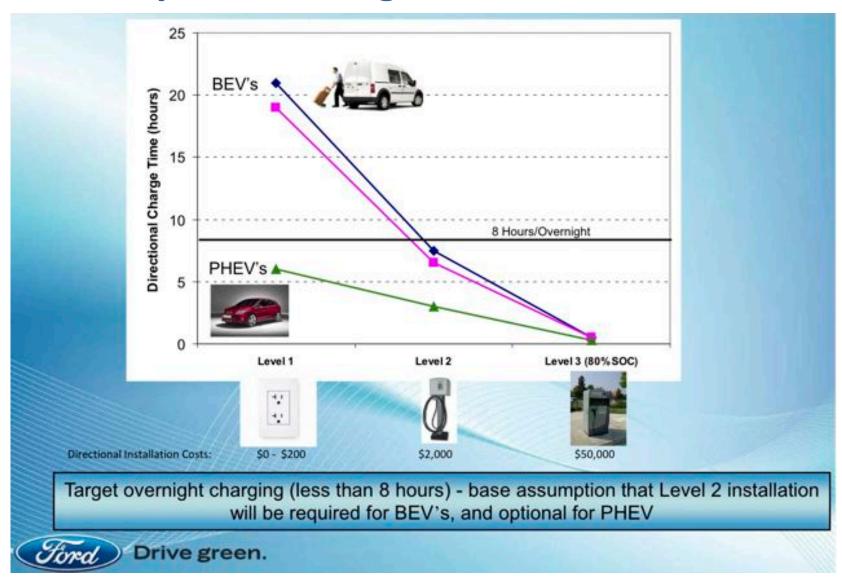

Light-duty U.S. PEVs sold and market share

Cumulative plug-in-vehicle sales by calendar year thru Feb'14



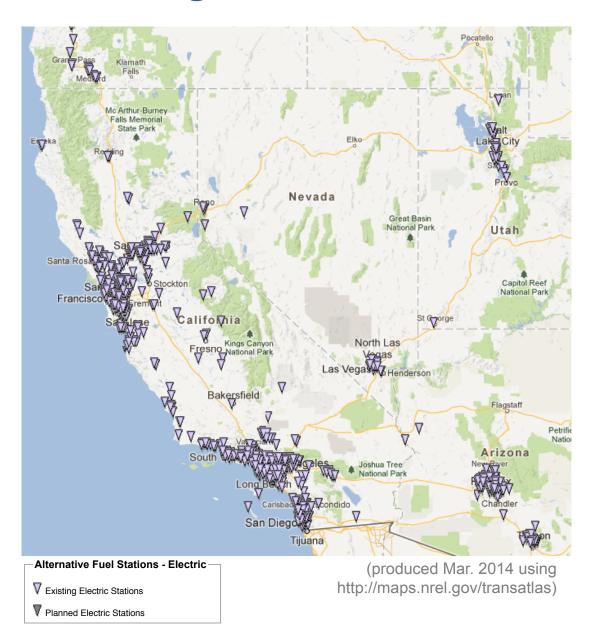
bdw@ucla.edu

by PEV type


by PEV type, CA

What kinds of stations are available?

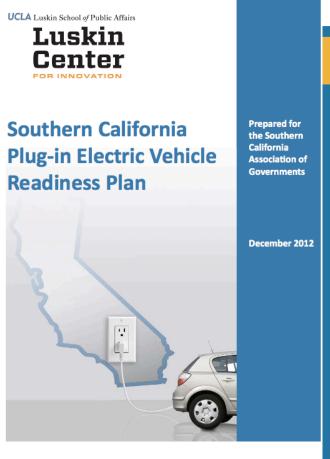
e-infra by Level, Charge Time (Marakby 2010)

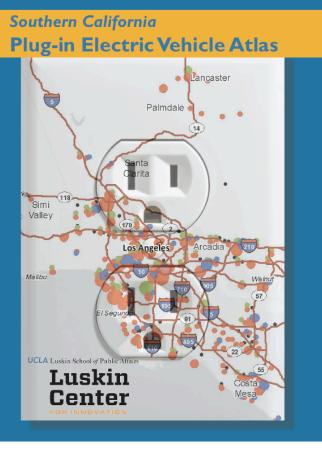


Where are we with refueling infrastructure?

Charging Stations

California charge stations (~1,626 as of Feb'14)



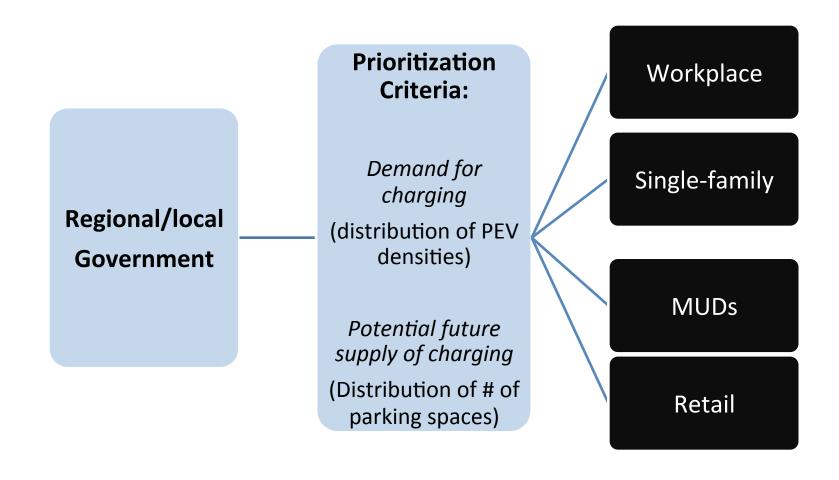


Regional PEV readiness planning

Particular thanks to:

Prof. JR DeShazo, Luskin Center Director Ayala Ben-Yehuda, PEV Readiness Project Manager Policies
and
planning
guidance
to facilitate
charging
installation
and
operation

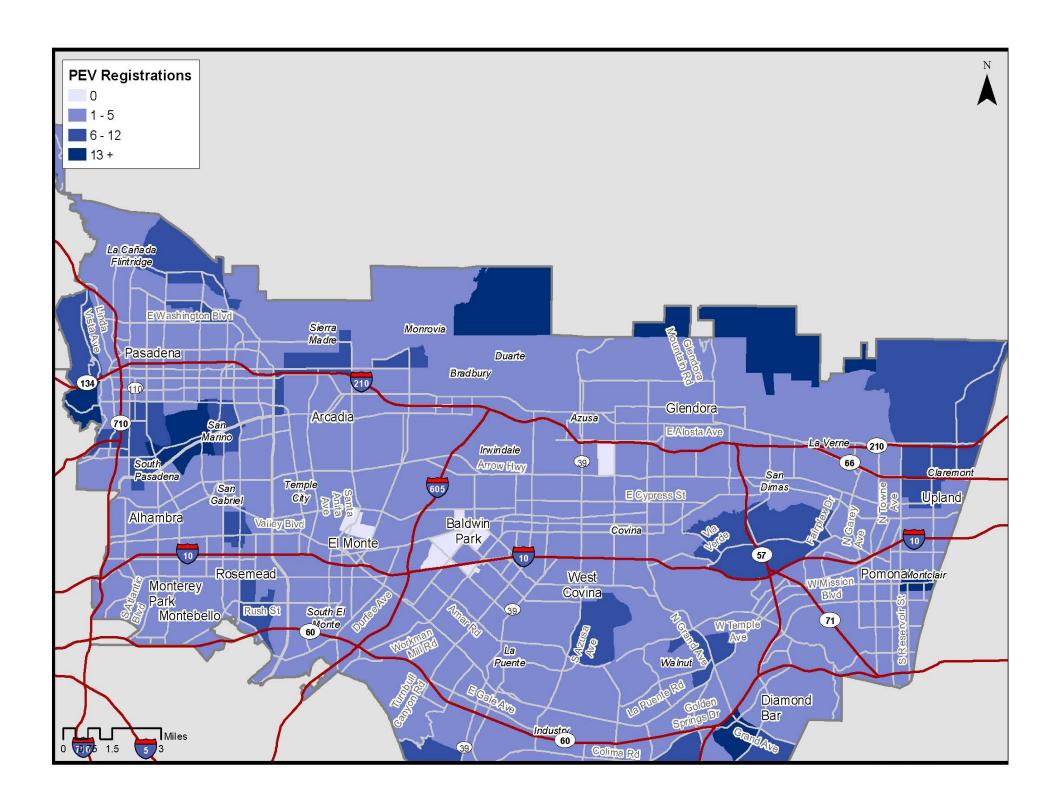
Prioritize *locations* for charging

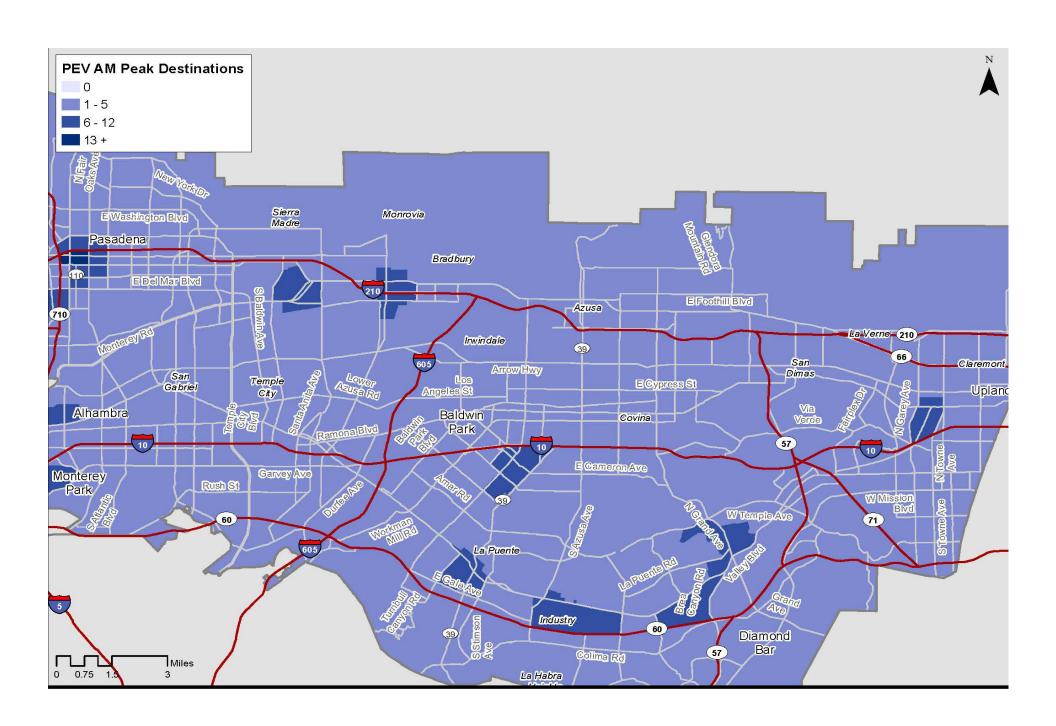

Southern California PEV Readiness Plan and Atlas

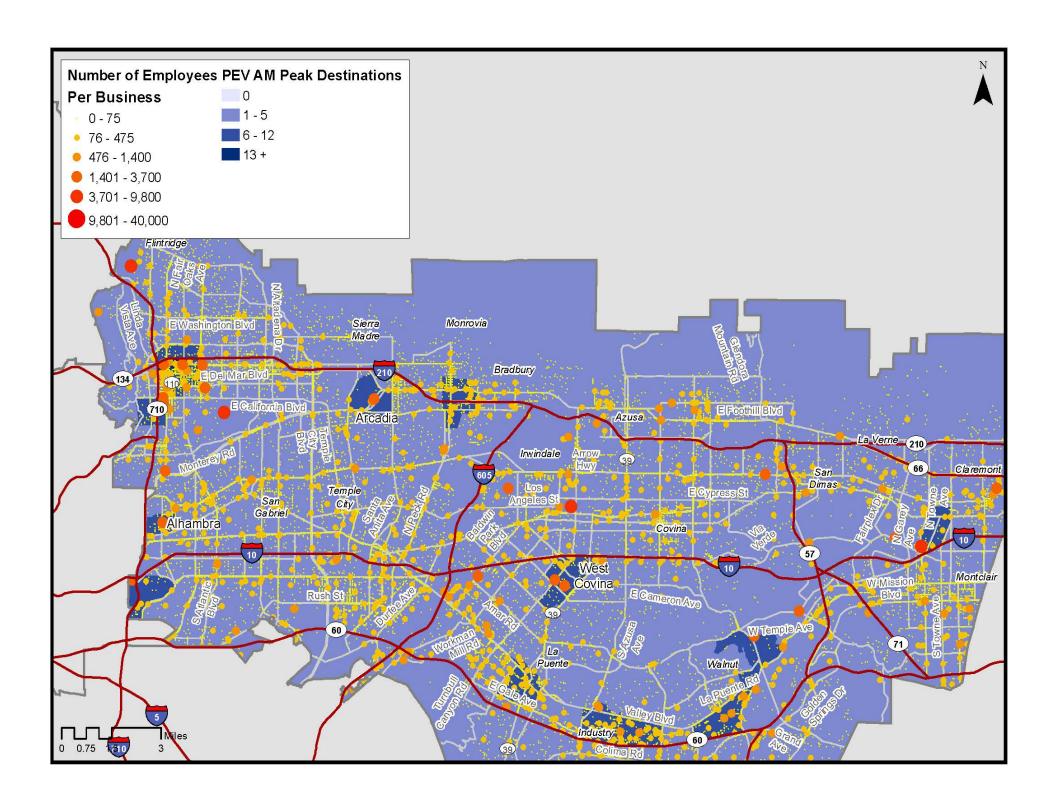
Download at innovation.luskin.ucla.edu/ev

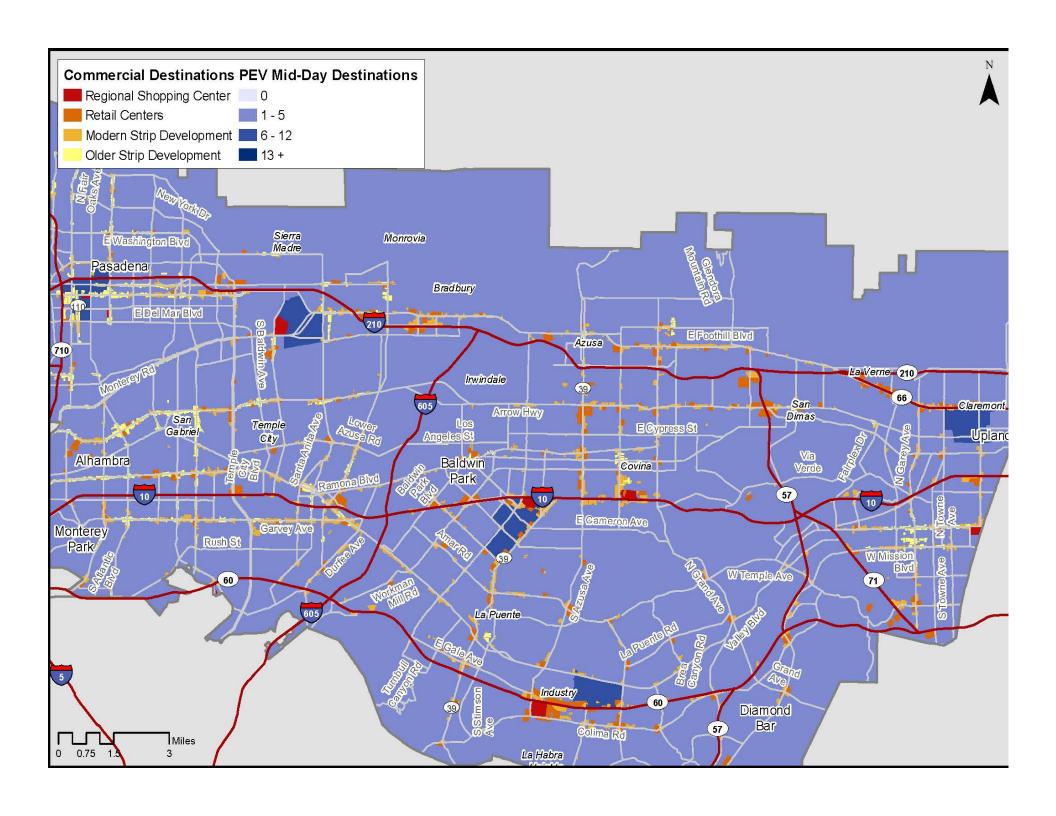
Policy & Planning Guidance

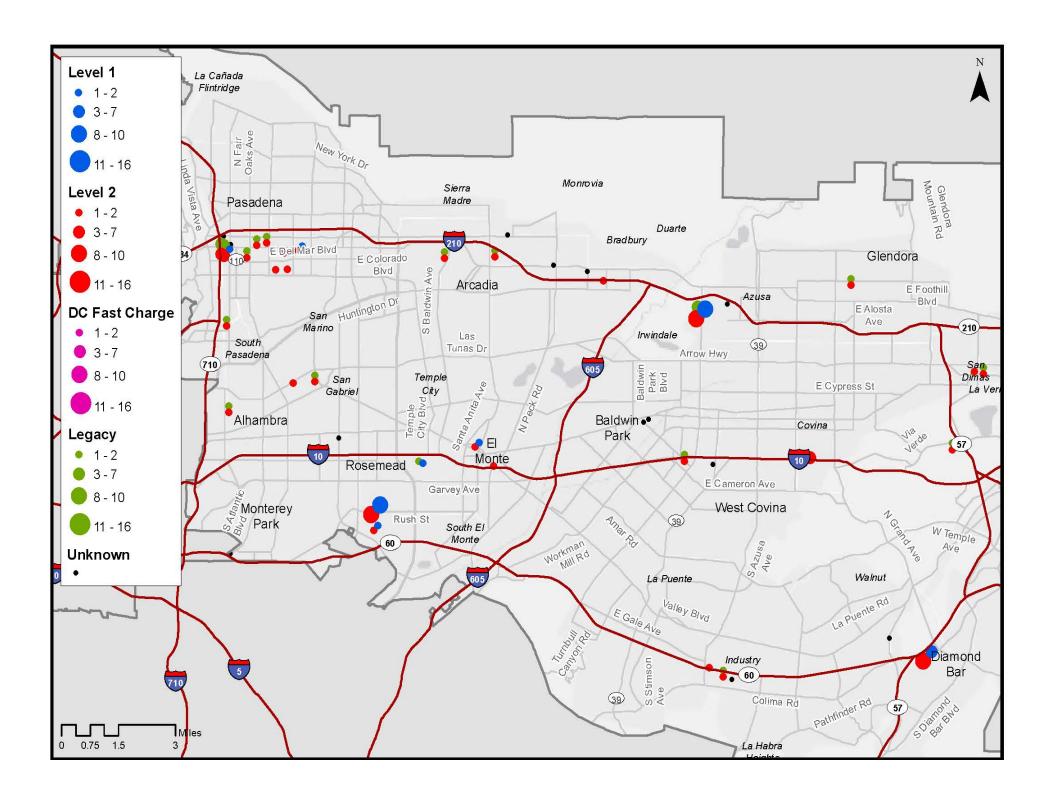
- Siting and pricing charging stations
 - Multi-unit-dwelling, workplace, public-sector, commercial
- Permitting and inspecting installations
- Regulating parking and signage
 - Accessibility
- Building and zoning codes
 - Including PEV-ready wiring in new construction
- Outreach

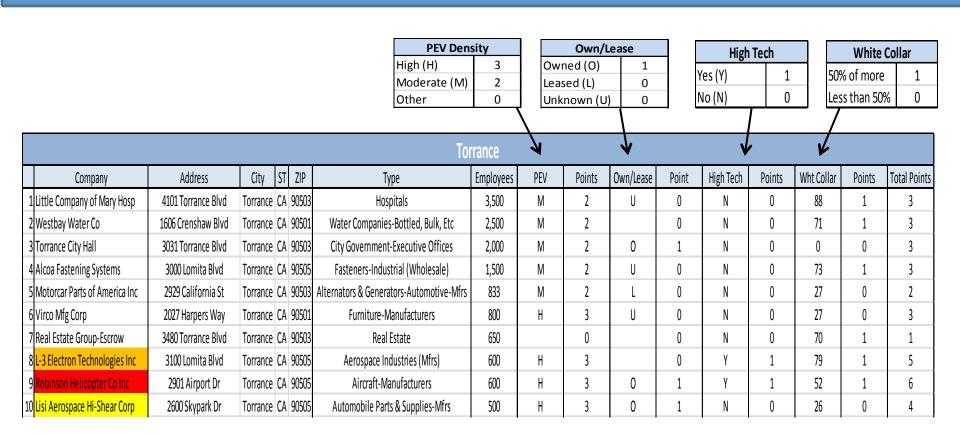

Example: Sub-regional PEV Planning Process






Understanding regional demand for charging


PEV densities and travel


Understanding a region's potential charging supply

Hosting capacity by type

Potential Charging Supply: South Bay Cities Example

	Employee Count	Rank	% Employee	Rank	Multi-Family Count	% Multi-Family	Single-Family Count	% Single-Family
Torrance	114,489	1	68%	4	24,343	15%	28,482	17%
Carson	75,483	2	76%	2	5,634	6%	17,928	18%
Inglewood	42,231	3	55%	6	22,626	30%	11,448	15%
Gardena	34,307	4	65%	5	10,011	19%	8,329	16%
El Segundo	30,799	5	82 %	1	4,071	11%	2,587	7 %
Hawthorne	24,791	6	48%	9	20,260	39%	6,653	13%
Redondo Beach	23,084	7	46%	10	18,888	37%	8,485	17%
Manhattan Beach	16,582	8	53%	7	4,654	15%	9,793	32%
Lawndale	7,599	9	50%	8	5,467	36%	2,112	14%
Hermosa Beach	7,419	10	45%	11	5,700	35%	3,289	20%
Rolling Hills Estates	6,416	11	69%	3	127	1%	2,727	29%
Rancho Palos Verdes	5,942	12	27%	14	3,247	15%	12,573	58%
Lomita	5,341	13	40%	12	4,981	37%	2,966	22%
Palos Verdes Estates	2,052	14	27%	13	349	5%	5,095	68%

Torrance Workplace-Charging Example

Total Points
4
5

Pricing Workplace Charging: Financial Viability and Fueling Costs

Brett Williams, MPhil (cantab), PhD and JR DeShazo, PhD Transportation Research Record (forthcoming)

Workplace Charging Financial Viability: Abstract

Two perspectives assessed:

- 1) employers investing in facilities and pricing their use
- 2) employee drivers.
- Pricing levels that motivate drivers to "fuel" at work may provide limited station cost recovery.
- \$1.25/hour, \$0.20/kWh markup on electricity, or \$35/month each cover only ~\$1,500 in all-in facility costs per PEV.
- Monte Carlo simulation highlights key assumptions, indicates employers' choice of pricing structure affects viability in the face of uncertainty.
- "Multiplexed," perhaps lower-power charging might help.
- The differential, "discriminatory" impact of different pricing structures on different drivers is also discussed.

Station profitability

10-year present value of net revenues (NPV)

Workplace charging breakeven pricing: per-hour

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

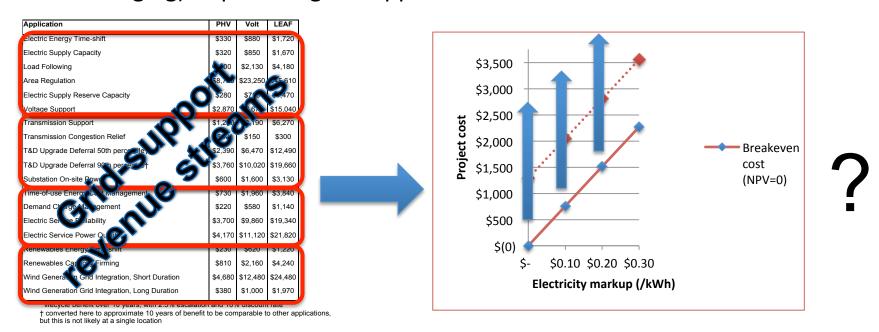

Cost of fueling

Table 3-7: Illustrative fueling cost benchmarks: Per-hour workplace charging

Pricing Level	\$ per electric mile	Electricity equivalent	Gasoline equivalent (CV)	Gasoline equivalent (PHEV)
H1. \$0.50/hour actively charging	\$0.05/e-mi	\$0.14/kWh	\$1.34/gal	\$2.02/gal
H2. \$0.75/hour actively charging	\$0.07/e-mi	\$0.21/kWh	\$2.01/gal	\$3.03/gal
H3. \$1.25/hour actively charging	\$0.12/e-mi	\$0.36/kWh	\$3.35/gal	\$5.05/gal

Supplemental Value?

- Given the limited cost-recovery potential of workplace charging, some employers may want additional value
- Might secondary use of charging facilities help?
 - Employee + fleet + nighttime public access?
 - Control (and aggregation) of recharging timing and rate (i.e., smart charging) to provide grid-support services

Avoiding zero-sum-game dynamics

Mercedes plug-in F-125 FCEV prototype

- No clear "winner" for all applications
- Consider batteries as storage in the context of hybrid platform evolution
 - What degree of hybridization can you afford and use?
 - If 100% (i.e., BEV) gets the job done, look no further
 - If not (for whatever combination of reasons), hybrid platforms will need a clean, efficient potential replacement for combustion engines
 - Electrochemistries of the future blur the lines anyway

Thank you for your attention!

Additional slides, references available...

Acknowledgements and Additional Sources

Thanks to:

- JR DeShazo, Ayala Ben-Yehuda, Tongxin Xu and Alan Kerbel-Shein
- autobloggreen.com, the source of most of the car images not otherwise credited
- hybridcars.com for most of the PEV sales data
- RL Polk & Co., supplier of CA registration data bought for UCLA Luskin EV Initiative research

Some terms (others defined within)

AB assembly bill

AQMD air quality management district

CA California

CARB California Air Resources Board

CEC California Energy Commission

CO₂e carbon-dioxide-equivalent (greenhouse-gas emissions)

EPA Environmental Protection Agency

EV electric-drive vehicle (hybrid, plug-in-hybrid, all-battery and

fuel-cell EVs)

GHG greenhouse gas

NHTSA National Highway Traffic Safety Administration

ZEV zero-tailpipe-emission vehicle (plug-in and fuel-cell EVs)

Notes about these slides

- EV = electric-drive vehicle = conventional hybrids + PEVs + FCEVs
 - HEVs = hybrid EVs (aka "hybrids") = conventional (all-gasoline) hybrids + PHEVs
 - PEVs = plug-in electric vehicles (aka "plug-ins") = BEVs + PHEVs
 - PHEVs = plug-in hybrid EVs (aka "plug-in hybrids")
 - BEVs = all-battery EVs (aka "all-electric")
 - FCEVs = fuel-cell EVs
- Figure legend order usually reflects sequence of vehicle introduction.
- No single source used contained a complete and/or accurate list of sales data, so multiple sources were compiled by the National Renewable Energy Laboratory (gasoline-only hybrid data), CNCDA (California yearly totals), and UCLA Luskin Center (PEV data, most of which were compiled from monthly reports at hybridcars.com).
- Data for the Tesla Roadster, Cooper MINI-E, Th!nk City, Azure Transit Connect Electric, Fisker Karma, and Coda Sedan are usually not included.
- Tesla Model S sales are estimates and increasingly overestimate U.S. sales as the vehicle is marketed globally. Further, for simplification, it is assumed that all 2012 sales are the 85kWh model and 2013 and subsequent sales are the 60kWh model.

Misc. References

- Williams, B. D.; Moore, T. C.; Lovins, A. B., "Speeding the Transition: Designing a Fuel-Cell Hypercar." In 8th Annual U.S. Hydrogen Meeting, National Hydrogen Association: Alexandria VA, 1997. www.rmi.org
- Williams, B. D.; Finkelor, B., "Innovative Drivers for Hydrogen-Fuel-Cell-Vehicle Commercialization: Establishing Vehicle-to-Grid Markets." In Hydrogen: A Clean Energy Choice (15th Annual U.S. Hydrogen Meeting), National Hydrogen Association: Los Angeles CA, 2004. http://its.ucdavis.edu/hydrogen/Brett.shtml
- Williams, B. D. and K. S. Kurani (2006). "Estimating the early household market for light-duty hydrogen-fuel-cell vehicles and other "Mobile Energy" innovations in California: A constraints analysis." <u>Journal of Power Sources</u> 160(1): 446-453. http://www.sciencedirect.com/science/article/B6TH1-4JRVB7F-2/2/d258d1944768b491ae39493d1506d00c
- Williams, B. D. and K. S. Kurani (2007). "Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile Electricity" technologies and opportunities." <u>Journal of Power Sources</u> 166(2): 549-566.
 http://www.sciencedirect.com/science/article/B6TH1-4MV7531-2/2/5595dc45642a0083cf840733d77c6354
- Williams, B. D. and T. E. Lipman (2011). Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-In-Vehicle Propulsion Batteries; report number TBD (in press); California Energy Commission: Sacramento CA
- Williams, B. D.; Martin, E.; Lipman, T.; Kammen, D. "Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California." *Energies* 2011, 4, (3), 435-457. http://www.mdpi.com/1996-1073/4/3/435/pdf
- DeShazo, J., Ben-Yehuda, A., Williams, B.D., Hsu, V., Kwon, P., Nguyen, B., Overman, J., Sarkisian, T., Sin, M., Turek, A., Zarate, C., 2012. Southern California Plug-in Electric Vehicle Readiness Plan. UCLA Luskin Center for Innovation, Los Angeles. innovation.luskin.ucla.edu/ev
- UCLA Luskin Center for Innovation, 2012. Southern California Plug-in Electric Vehicle Readiness Atlas. UCLA Luskin Center for Innovation, Los Angeles. innovation.luskin.ucla.edu/ev
- Smith et al. 2013. 2013–2014 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program. California Energy Commission.